

112 11 11 11

PRECAST SOLUTION FOR COMMERCIAL BUILDING

Advantages compared to conventional construction

Structural Framing

Staircase

PRECAST ELEMENTS

Wall

Column

4

CONNECTIONS

Column to Column

Column to Beam

CONNECTIONS JUNCTION TO BE FILLED WITH DIAPHRAGM -TOPPING GRADE - AGGREGATE MECHANICAL -REINFORCEMENT (<10MM) COUPLER - BEAM TOP BARS / INTERNAL TIES 100 **T10 BAR PROVIDED AT** PRECAST HCS EVERY HCS-HCS SLAB JUNCTION Transversal ties 150 150 900 - PRECAST HCS Longitudinal tie 1200 5 MM THICK SLAB ELASTOMERIC BEARING PAD PROPERLY SECTION A . ATTACHED TO BEAM. **SECTION AT HCS-HCS JUNCTION** SCALE-1:20 4 - Vu = 130 kN/m - ONE CORE PER HCS TO BE - DIAPHRAGM REINFORCEMENT OPENED ON EITHER SIDE. - BEAM TOP 600 600 200 200 Longitudinal ties BARS/INTERNAL TIES Peripheral tie 272 T10 BAR PROVIDED IN 100 PRECAST HCS -EVERY OPEN SLIT. SLAB 5 MM THICK ELASTOMERIC PRECAST HCS BEARING PAD PROPERLY SLAB 900 150 150 ATTACHED TO BEAM. 1200 **SECTION B** SECTION AT HCS OPEN CORE SCALE-1:20 9 Slab to Beam

CONNECTIONS

(Wall to Wall) / (Wall to Slab)

PRECAST CONCRETE

 Precast concrete is a construction product produced by casting concrete in either reusable molds or by using highly advanced machinery which is then cured in a controlled environment, transported to the construction site and lifted into place.

OFFICE BUILDING

OFFICE BUILDING

ELEMATIC

OFFICE BUILDING

ELEMATIC

Conventional Construction

Conventional Construction

Conventional Construction (Improved)

Why Precast construction?

Saves Concrete and Steel

• 15-20% savings in Concrete and steel.

Efficient construction

• No Shuttering and Scaffolding Work

Efficient Construction Sites

- Safe Working Conditions at Site
- Immediate Working Platform

Better Quality Buildings

- Longer Life Span of the Building with durability
- Less Maintenance

No Curing required at Site

- No Curing Required at Site
- Elements are Factory Cured, Less Curing Time
- Saves Water and Energy

Low Maintenance & Life Cycle Cost

- Life Cycle Cost in Precast Buildings are Minimal.
- Good for All Extreme Weather Conditions.
- Better Looking and Better Lasting Buildings

Precast competitiveness is based on

Materials

- Better use of raw materials
- Exact mix design
- Less waste
- Pre-stressing vs. R/C

Design

- Design standards, internal standards
- Design by testing

Production

- Better productivity
- Controlled process
- Mechanisation/automation

Quality

- Better surfaces, less finishing work
- Quality control easy to organize

Bill of Quantity

- Upto 15 storey structure
- Column to column spacing 11.20m
- Moderate seismicity
- Total beam depth
 600mm
- Storey Height 4.20m

Precast Vs Conventional for Superstructure (Estimated)

S. No.	ltem	Precast	Conventional
01	Concrete (m3/m2)	0.36	0.42
02	Rebar (kg/m2)	28	45
03	Prestressing Strands	8	0

Note: Conventionally, it's difficult to restrict beam depth to 600mm, especially in end bays.

Landmark Precast Project

PROJECT: IT PARK

- PROJECT SIZE: 40 MILLION SQ FT
- LOCATION: HYDERABAD, INDIA
- 12 COMMERCIAL TOWERS, AND LARGE NON TOWER AREA
- TYPICAL ONE TOWER
 CONFIGURATION 7 BASEMENTS + 34
 ABOVE GROUND, AREA: 2.5 MNSQFT
- LARGEST COMMERCIAL PRECAST DEVELOPMENT EVER PLANNED
- 5 MNSQFT / YEAR PRECAST CONSTRUCTION
- ELEMATIC IS PROVIDING TOTAL PRECAST SOLUTION; DESIGN, PLANT SUPPLY, AND INSTALLATION

Elematic Facts in Brief

- Founded 1959
- Head office: Akaa, Finland
- Production units: Finland, India and China
- Customer service centers: UAE (Dubai), Finland and USA.
- Subsidiaries and sales offices: UAE (Dubai), USA, Germany, Hong Kong, Russia, India, China.
- **Representatives:** In over 50 countries

More than 450 Patents and Over 4000 deliveries worldwide to more than 100 countries

World market share. Hollow-core slab technology

Elematic 60%Others 40%

Elematic Offerings

India Offices

New Delhi –

- Marketing Team
- Service Team

Gurugram, Haryana -

- Design Team

Alwar, Rajasthan –

- Manufacturing Plant
- Spare Parts

Pune, Maharashtra

- Design Team
- Service Team

Bangalore & Hyderabad –

Marketing Team

DESIGN TEAM: A SNAPSHOT

- EXPERT TEAM OF Structural Engineers, BIM Modelers (ASMEPF)
- Lead structural engineers are graduate/post graduate from premium colleges (IIT/NIT) and together they bring 40+years of industry experience.
- TEAM MAJOR EXPERIENCE is in design and BIM for precast/cast in-situ RCC and Structural Steel low to Highrise building projects in India and abroad
- DESIGN CODE IS, ACI, EN, NZS, BS

<u>Tools</u>

- Analysis and Design: ETABS, SAFE, STAAD.Pro, SAP2000, Concise Beam
- BIM: Tekla, Revit, Civil 3D

